标签归档:科普

暗物质笔记

首先要说明,这只是一篇读书报告,其中很多原理技术我自己也是一知半解,不过是觉得这个问题应该会有很多人感兴趣,便恬颜抛砖了。

在数十亿年的演化之后,我们终于能凝视光线的传播,倾听空气的振动,品味分子的味道……以此认识周围的缤纷世界,被感知的一定存在,但存在的却不一定都为人所知,天体也是如此。深邃的夜空中熠熠闪烁的星光便是我们所能获知的全部:颜色可以化为温度,由光谱可以算出速度,监测光变可以知道体积、年龄、距离甚至内部结构;但这些都还不够,当我们发现人眼看到的仍然有限时,又从紫外、红外、厘米波、毫米波、X射线、伽马射线……所有可能的波段收集那些历经千万年漫长旅程到达这里的电磁辐射,就好像找到了一本装满宇宙不同时期照片的影集,发现了无数前所未有的星系以及更多的暗得无法分辨的天体,构成我们身体的元素就来自这些明亮的场所。但是,这些光的源头便是宇宙的全部么?

阿贝尔星系团1689

二十世纪中期,天文学家们逐渐发现星系团成员之间的相对运动并不符合理论上的预言,似乎受到更大的质量的牵引;而星系中物质的旋转速度也不因远离核心而降低——这说明星系外围的光度降低并不意味着质量分布的下降。要用现有理论解释这些观测事实需要十倍于发光物质的质量,这些从未被发现的质量便称为“暗物质”。

继续阅读

我所理解的超新星宇宙学

天文观测中最困难的就是距离测量,因为我们直接看到的只是天体的二维投影,于是几千年来流传的只有星座的神话,直到18世纪以后,用三角视差法测量了较近的天体(150光年以内),人们才开始了解宇宙空间的三维图像。二十世纪中叶,天文学家们终于找到了更有效的距离尺度——造父变星,他的光变周期和亮度有着确定的关系,哈勃用它首先证明仙女座大星云其实是和我们一样的星系,并发现整个宇宙都在膨胀(哈勃定律)。造父变星也从此获得 “量天尺”的美誉。但是恒星的亮度毕竟有限。对于众多尚无法分辨出成员恒星的遥远星系便无能为力了。这种方法所能确定的最远距离只有3亿光年左右。

1987年在大麦哲伦星系中发现的超新星

而超新星爆发时,它的亮度会超过整个星系。《宋史》中所记录的1054年超新星,连续23天白天可见!一千年后它的遗迹仍在星际间扩散,被称为蟹状星云。如果能够想办法得到它们的绝对亮度,再与我们所观测到的亮度(视亮度)相对比,便能够估计出距离。而光速是有限的,对于遥远的天体,我们只能看到它的历史,但也正是如此,我们才有可能获得早期宇宙的信息!

但是超新星爆发时很少见的,对于银河系这样的星系平均50-100年才会有一颗。不过宇宙中星系是相当多的,通过长期监测大量星系,我们总可以发现其他星系中的超新星。在积累了足够多的数据之后天文学家们终于在被称做Ia型的超新星中首先发现了规律:它们爆发后的亮度变化曲线与亮度极大值有关。只要我们及时发现它,记录下整个爆发过程的亮度变化,就能够得出距离!

从前的宇宙和我们现在会有什么不同呢?1998年Adam Riess(巴尔蒂摩太空望远镜研究所)和Saul Perlmutter(加州大学伯克利分校)先后发表了他们的超新星数据:那些遥远的(高红移)超新星比我们期望的要暗!也就是说比哈勃定律所预言的更远!而哈勃定律在邻近的星系中是普遍成立的,较近的超新星数据也证实了这一点,这意味着宇宙并不是匀速膨胀的,现在膨胀的比从前更快——宇宙是在加速膨胀!

此前人们普遍认为由于引力的作用,宇宙膨胀肯定是减速的,那么到底是什么为整个宇宙提供了加速的动力?现在这仍是个谜……

烛焰温度问题

这一篇是将原写在银穹的一系列网志合并而成,以方便查阅。

小学时被告知:蜡烛外焰温度高,内焰温度低,当时感觉靠近炷芯的蓝色火光确实不如顶部的黄色火焰明亮耀眼,这是最直接的感性经验,很容易接受。

中学化学老师也说给试管加热时要用酒精灯外焰——因为温度高些。

高中物理课学到,光辐射波长与辐射体温度成反比,310K的人体就只能辐射红外线。也就是说,在可见光范围内,温度越高,光线越蓝!(而同时化学课上所看到的颜色反应则是特征谱,不在此列)

这时问题就来了,蜡烛火焰中到底哪部分温度最高?蓝光还是黄光?总有一个错了!

烛焰烛焰

甚至某些科普性的网站对这个问题的解释也是不正确的。比如:

Color tells us about the temperature of a candle flame. The outer core of the candle flame is light blue — 1670 K (1400 °C). That is the hottest part of the flame. The color inside the flame becomes yellow, orange and finally red. The further you reach to the center of the flame, the lower the temperature will be. The red portion is around 1070 K (800 °C). The reason there is this variation in a candle’s flame color is because air convection pulls the warmer gasses upwards.

floating其中称最外侧的蓝光温度高达1400度,内部的红光为800度。这里显然将外焰认为是蓝光,但是从图中可以明显看出外焰应是黄白色区域,内焰为红色区域,蓝色并不明显、通常只存在于底部及下边缘,亮度也很暗,无法形成实际意义的外焰。
CNKI上相关的论文资料很少,只在1994年第四期的《光谱学与光谱分析》中看到“蜡烛火焰的光谱分析”一文。火苗中部与空气接触部分的温度最高,有1400度,而烛芯处仅有600度,与常识一致,可解释为外缘有充足的氧气供应,燃烧充分。底部的蓝光则是CH分子基团的特征颜色,而对燃烧过程则语焉不详,参考文献中有一本地质出版社80年代出版的《分析火焰光谱学原理》,不过我没有找到。

几个月后又在1979年第6期《科学》(科学美国人中译本)的业余科学家专栏看到了专门介绍,底部的蓝色火焰由光谱分析证实是CH和H2的特征谱,同焰色反映一样,为特定能级跃迁,不表征温度。此处的蜡烛蒸汽由于对流作用可获得充足的氧气供应,充分燃烧(直接生成二氧化碳和水)。再往上走,大部分有机蒸汽由于氧气不足只能进行不完全燃烧,发热量低,便为红光,若将此处气体用玻璃管导出焰外可直接燃烧。不完全燃烧的分解物(主要是碳粒)在上升过程中不断吸收热量达到白炽状态,一旦与空气接触将剧烈反应,于是边缘白光处温度可达摄氏1400度。

其实不仅是蜡烛,钨丝、钢铁、烟草等物质都有同样的温度颜色分布规律,在2000年10月《金属制品》杂志中《观察物色判定炉温》中就引用了钢丝温度与颜色的经验对应关系。

温度/℃ 550 630 680 770 850 900 1000 1200 1400
颜色 暗褐色 褐红色 暗红色 樱红色 鲜红色 黄红色 黄色 黄白色 黄白色、亮、刺眼

我的问题就此告一段落。

后来在2005年第四期的上海版《科学》杂志上看到一则简讯,中科大齐飞教授参与的一个项目组以同步辐射光电离质谱技术进行火焰研究,这项技术可以准确地测量燃烧过程的所有中间物和自由基。他们首次观察到碳氢化合物氧化过程的中间体-烯醇(Erlenmeyer在1880年曾预言烯醇应该是碳氢化合物氧化的中间物,直到1976年才首次在气相化学反应中观察到最简单的烯醇-乙烯醇),并以“Enols Are Common Intermediates in Hydrocarbon Oxidation”为名刊登在2005年5月12日出版的《Science Express》上。看来,这一领域的工作还远未结束。

雪花照片

雪花

网上一直流传着一组雪花的显微照片,但是由于中文网站大都没有注明转载的出处,我一直无法找到它们的来源。在牧夫论坛里甚至还争论过是否出于《水知道答案》的作者之手。在桑林志那里也有一则提到,但是给出的链接都是些灰白的电镜照片,我无法想象那些松糕一样的东西就是美丽的冰晶。

直到最近在一则美国邮政总局将以此为主题发行邮票的报道中,拍摄者的名字才第一次出现——肯尼斯·里布雷希,加州理工学院的物理学教授。我也终于知道了作者的英文名字Kenneth Libbrecht,google到了原始网站,但是无法直接打开! 当我终于打开时,所有的疑问都解开了……

雪花照片分三组,50多张,桌面级。 对于各种结构的分类总结配上他拍的精美图片,一目了然;理论成因也有详尽的解释。生长过程甚至作了gif动画,而拍摄方法,所需设备都有具体的说明,所参考的各种文献都在页面底端列出。

雪花生长

大致的生长方法是,在一个绝热透明腔中,保持底部温度为零下40摄氏度,顶部为40摄氏度,这样在顶部蒸发的水汽将在底部进入过饱和态,这非常有利于冰晶生长。 这时从空腔底部放入金属丝,就会被冰晶包裹,再给金属丝加上高压(可达2000伏),就可以长出纤细的冰针了,为了得到理想的冰针还会加入其他一些化学气体(如硅树脂),随后,每个冰针顶部都长出雪花,随着生长时间的不同,雪花的形状也时刻在变化。通常直径在1毫米左右(更大的将会无法同时准确对焦)。用摄像机将图像导入显微镜的物镜中,再用目镜端CCD将其数字化传至电脑。拍摄时会选取雪花的正上方,这样就刚好看不见冰针,使画面显得非常干净。不过原始图片基本是黑白的,要在Photoshop中加上颜色,便得到了我们开始所看到的美丽照片。

肯尼斯是加州理工的教授,物理系主任。目前主要的研究方向是利用激光干涉观测引力波,也就是LIGO计划,冰晶生长和图案形成,物理教育中的可调激光器;以前曾涉足日震学(Helioseismology?嘿嘿,发现一个错别字)和太阳大尺度结构以及单个原子的激光冷却和捕捉等领域。跨度也是相当大了。他拍摄的雪花照片集目前已出了两本:2003年11月的《雪花:冬日的精灵》,以及2004年10月的《雪花的小册子》。

图片都已传到牧夫论坛图片版