这一篇是将原写在银穹的一系列网志合并而成,以方便查阅。
小学时被告知:蜡烛外焰温度高,内焰温度低,当时感觉靠近炷芯的蓝色火光确实不如顶部的黄色火焰明亮耀眼,这是最直接的感性经验,很容易接受。
中学化学老师也说给试管加热时要用酒精灯外焰——因为温度高些。
高中物理课学到,光辐射波长与辐射体温度成反比,310K的人体就只能辐射红外线。也就是说,在可见光范围内,温度越高,光线越蓝!(而同时化学课上所看到的颜色反应则是特征谱,不在此列)
这时问题就来了,蜡烛火焰中到底哪部分温度最高?蓝光还是黄光?总有一个错了!
甚至某些科普性的网站对这个问题的解释也是不正确的。比如:
Color tells us about the temperature of a candle flame. The outer core of the candle flame is light blue — 1670 K (1400 °C). That is the hottest part of the flame. The color inside the flame becomes yellow, orange and finally red. The further you reach to the center of the flame, the lower the temperature will be. The red portion is around 1070 K (800 °C). The reason there is this variation in a candle’s flame color is because air convection pulls the warmer gasses upwards.
其中称最外侧的蓝光温度高达1400度,内部的红光为800度。这里显然将外焰认为是蓝光,但是从图中可以明显看出外焰应是黄白色区域,内焰为红色区域,蓝色并不明显、通常只存在于底部及下边缘,亮度也很暗,无法形成实际意义的外焰。
CNKI上相关的论文资料很少,只在1994年第四期的《光谱学与光谱分析》中看到“蜡烛火焰的光谱分析”一文。火苗中部与空气接触部分的温度最高,有1400度,而烛芯处仅有600度,与常识一致,可解释为外缘有充足的氧气供应,燃烧充分。底部的蓝光则是CH分子基团的特征颜色,而对燃烧过程则语焉不详,参考文献中有一本地质出版社80年代出版的《分析火焰光谱学原理》,不过我没有找到。
几个月后又在1979年第6期《科学》(科学美国人中译本)的业余科学家专栏看到了专门介绍,底部的蓝色火焰由光谱分析证实是CH和H2的特征谱,同焰色反映一样,为特定能级跃迁,不表征温度。此处的蜡烛蒸汽由于对流作用可获得充足的氧气供应,充分燃烧(直接生成二氧化碳和水)。再往上走,大部分有机蒸汽由于氧气不足只能进行不完全燃烧,发热量低,便为红光,若将此处气体用玻璃管导出焰外可直接燃烧。不完全燃烧的分解物(主要是碳粒)在上升过程中不断吸收热量达到白炽状态,一旦与空气接触将剧烈反应,于是边缘白光处温度可达摄氏1400度。
其实不仅是蜡烛,钨丝、钢铁、烟草等物质都有同样的温度颜色分布规律,在2000年10月《金属制品》杂志中《观察物色判定炉温》中就引用了钢丝温度与颜色的经验对应关系。
温度/℃ |
550 |
630 |
680 |
770 |
850 |
900 |
1000 |
1200 |
1400 |
颜色 |
暗褐色 |
褐红色 |
暗红色 |
樱红色 |
鲜红色 |
黄红色 |
黄色 |
黄白色 |
黄白色、亮、刺眼 |
我的问题就此告一段落。
后来在2005年第四期的上海版《科学》杂志上看到一则简讯,中科大齐飞教授参与的一个项目组以同步辐射光电离质谱技术进行火焰研究,这项技术可以准确地测量燃烧过程的所有中间物和自由基。他们首次观察到碳氢化合物氧化过程的中间体-烯醇(Erlenmeyer在1880年曾预言烯醇应该是碳氢化合物氧化的中间物,直到1976年才首次在气相化学反应中观察到最简单的烯醇-乙烯醇),并以“Enols Are Common Intermediates in Hydrocarbon Oxidation”为名刊登在2005年5月12日出版的《Science Express》上。看来,这一领域的工作还远未结束。