Sherpa表面亮度拟合

与致力成为X射线数据分析通用工具的HEASOFT不同,Ciao (Chandra Interactive Analysis of Observations) 是专为Chandra卫星数据开发的。它也包含了一个数据分析工具Sherpa。基于现有的脚本语言,从而可以方便地移植扩充。开始有Python 和S-Lang 两个版本,不过现在已经停止了对S-Lang的支持。下面我们介绍如何用它来拟合星系团的面亮度分布。
为了减少计算量,我们先从去除点源的图像中裁出星系团所在区域.使用 dmstat处理前面生成的图像文件.可以得到图像中的极大极小值坐标,如果目标形状不规则,还可以设置 centroid =yes 计算图像重心.

因为这个星系团形状比较规则, 我们这里直接取极值点.

下面就可以进入sherpa环境了

参数误差可以通过covariance()计算. 这样就得到了面亮度分布的β模型拟合参数。可以通过图像直观地检查。


image_fit()
# 调用ds9显示当前模型拟合结果,左上角是原始图片,右上角是拟合结果,左下角为残差

prof_fit_resid()
print_window(“win1.png”)
# 显示 profile 拟合结果,可以用ChIPS内部命令保存。
如果要将拟合得到的图像中心位置转换为WCS坐标, 可用下面的命令:

由这个结果我们可以看出,β模型可以较好地拟合星系团外围亮度分布,但无法解释星系团中心的亮度超出。因为这个模型基于等温假设,亮度谱指数中$$\beta = \mu m_{p} \sigma_{r}^{2}/kT_{g}$$(具体含义点此查看)。而在实际星系团内总是存在温度梯度。因此双β模型 set_source(beta2d.src+beta2d.core) 通常能给出更好的拟合结果. 详见 Radial and elliptical profiles of Image Data

标签:, , , , .

条回应

发表评论

电子邮件地址不会被公开。 必填项已用*标注

您可以使用这些HTML标签和属性: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

porno film