标签存档: 练习

XSPEC光谱分析

在得到X波段图像之后,我们可以通过拟合光谱来测量天体温度、金属丰度等信息,就要用到XSPEC。作为X射线光谱分析的通用软件,已经被包含在NASA的高能物理套件HEASOFT之中。是X射线分析套件XANADU的主要组件。这个名字本来是元上都的英译,马可波罗曾在他的游记中极力描绘那里的奢华繁荣,后又经英国诗人柯勒律治题诗歌颂,而演变为东方仙境的代名词。

言归正传,下面我们采用上文得到的 MACS J0257.6-2209 定标文件来提取光谱。如果不想重复前面的步骤,只需提取压缩包primary目录下的evt2.fits 文件,执行下面的命令即可。
继续阅读

标签:, , , , , , , .

Chandra图像定标

伪彩色这是2008年Paolo Tozzi 来北京做的X射线数据处理讲座的笔记,一直拖到现在才开始整理。这里是第一部分,主要是些准备工作。高能数据处理要用HEASOFT,Chandra数据还要用到Ciao和CALDB,按照说明文件一步步安装并不困难,只是2G多文件下载起来要费些时间。附加脚本也经常用到,解压到安装路径下就可以了。安装好之后,先用 heainit 和ciao初始化运行环境,若没有错误提示就可以运行下面的命令了。

如果手头上没有数据。可以先到Chandra数据中心找个自己喜欢的目标,数据通常会在保密期过后自动公开,既避免了对同一目标的反复观测,也能最大限度地发挥已有数据的价值。 我这里选择了红移0.3的 MACSJ0257.6-2209 (即Abell 402, Obs ID 3267 )。输入到左上角的Target Name中,点Search,会得Chandra已有的观测数据列表。我们选个曝光时间短点的,数据文件小些,加到获取列表中(Add to Retrieval List)。点击retrieval之后,服务器会自动将文件打包放到匿名ftp的临时目录下。也有一个基于python的自动下载脚本。 官方详尽的下载介绍由此跳转
继续阅读

标签:, , , , , , , .

昼夜之交


记得中学地理书中说过,“春分、秋分时太阳直射赤道,地球各处昼夜等长”。就是这样一个浅显的道理,在应用到实际情况时,并不是听上去那么简单。在国家授时中心网站可以查到,2009年春分日(3月20日)北京的日出时刻为:06时18分,日没时刻:18时26分,总日长12小时零8分。为什么会这样?
继续阅读

标签:, , , , .

用Matlab做星点识别

随着工作学习的深入,和原始天文照片的接触越来越多,发现对天文专业来说数字图像处理还是一门很有用的基础课程,连CMB功率谱之类看上去高深莫测的技术,其实都写在信号处理专业的本科教材里,把这段流程完全交给现成软件或者编程人员是没办法真正理解观测数据的。开始补课了,先从找星星开始~


比如我们有上面这张照片, 图中的亮点就是实际拍摄的星空,但左中和右下两个最亮的白点都是打在CCD上的宇宙线,它们能量很集中,没有扩展的形状。那要怎么让程序找到这些天体的位置,并识别出正确的星点呢? 继续阅读

标签:, , , , .

CMB的偶极性

三维偶极矩
宇宙微波背景辐射(CMB)有着近乎完美的黑体谱特征,也就是说弥散在空间中的原初光子有着相同的能量,但是从地球上、乃至宇宙中的任何一处并不能看到一个均匀的辐射图像。因为,我们在运动:地球以30km/s围绕太阳转动,太阳以220km/s围绕银河系中心转动,银河系在本星系群(Local Group)中受到仙女座大星系及众多小星系的拖拽,本星系群又属于室女座星系团(Virgo Cluster of Galaxies),而室女座星系团又被巨吸引子(Great Attractor)牵引……这个世界连真空都在膨胀!

考虑多普勒效应,与我们运动方向一致的光子频率将升高,波长变短,即颜色变蓝,反方向运动的则频率降低,颜色变红,这就形成了偶极(dipole)。将最后散射面上的光子速度投影在我们的运动方向上便得到了上面图像所显示的偶极CMB示意图,最蓝的位置即位观察者运动的方向。在垂直于运动方向的平面上观测到的光子频率不变,在此色表中正好为绿色,但并不说明光子颜色会变绿哦:)

继续阅读

标签:, , , , , .

掌舵问题

记得在高中物理中有这样一道习题,“一条速度为v的小船要过河,所需的最短时间和最短路程分别是多少,设水速为c,河宽为D”,答案很简单:最短时间不要求靠岸的位置,船头正对河岸即可;最短路程显然就是垂直距离(要求v>a),典型的速度矢量合成;而对v小于a的情况讨论则是学科竞赛的要求了,问题等效于已知三角形的两条边求使其中短边所对角最小的三角形,这个干净的几何解法让我对物理学的优美有了直观而深刻的印象。后来上了大学,在高等数学中(同济第四版)又见到同样的情景,求的是船头始终指向对岸目的地时的航线轨迹,因为船只位置在变,船头方向也在一直调整,据此建立微分方程组,不难解出迹线方程,不久后接触了数学建模,便不再囿于那些过于简化的题设了……

现实生活中的行船从来不是课本中所描述的那样简单,码头的位置是固定的,航向可以随时改变,水流的速度与河岸距离有关……这时再问同一个问题:“小船怎样过河时间最短?”,没人能轻易给出答案。
最短时间航线设码头在正对岸,这是个变分问题,但不能用常规办法求解,我在这里卡住很久,直到最近才在近藤次郎的《数学模型》一书中发现了解法,数值解;用的是前苏联数学家庞特里亚金1956年发表的最大值原理,该原理广泛应用于宇宙航行的轨道计算,但是同其它近代数学的进展一样,没有一个简单直观的表述,有兴趣的朋友请自行查阅。得出的航行轨迹如右图所示(图中两条线代表两种不同的控制方式)。最少燃料策略则与最短时间策略稍有不同,虽然都出乎我的意料,倒也不难理解,在水流较缓的岸边逆流而上调整航线,在水流湍急的河心顺流直下争取时间。

几年的困扰至此总算告一段落,现在我倒想听听内河船长们的经验,也许会有更多的选择

仔细想想,如此循序渐进的教法无非是要回避困难问题所带来的挫败,但这样建立起来的自信在现实面前不堪一击,没有探索的动力,没有发现的乐趣,什么样的孩子会喜欢这样的学习?社会期待创造力,而好学生往往只是听话而已。记得在William F.Lucas在《微分方程模型》(国防科大应用数学模型丛书)中曾说:“本章的目的是教你如何解决问题,而不是显示有人能够做什么!”

标签:, , .

由度规算曲率标量

上周被某人说成是“不务正业”,这次就讲讲本行吧(忽悠新手,外行可以无视,同行尽管鄙视)。

当代宇宙学的理论基石是在Robertson-Walker度规下由Einstein场方程推导出的Fridemman方程,现在的绝大部分工作都是以此为起点,而且也得到了可靠的观测支持。从给定度规得出场方程的具体形式是广义相对论的基础内容,但是由于方法繁复,教科书中都不会给出具体的计算过程,而结果又不是一望便知的,学到这里谁都少不了课下的一番推导验证。我当年偷懒跳过,现在却发现自己怎么都算不对了……

怅惘之际在论文库里发现2000年《上海天文台年刊》第21期中有一篇《利用Mathematica软件表示真空Einstein场方程》的文章,但又不想为此学门新语言,便用Matlab仿写了一个,代码如下:

继续阅读

标签:, , , , , , .
porno film